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Abstract. One-dimensional non-equilibrium kinetic Ising models evolving under the competing
effect of spin flips at zero temperature and nearest-neighbour spin exchanges exhibiting a parity-
conserving (PC) phase transition on the level of kinks are now further investigated numerically,
from the point of view of the underlying spin system. Critical exponents characterizing its statics
and dynamics are reported. It is found that the influence of the PC transition on the critical
exponents of the spins is strong and the origin of drastic changes as compared to the Glauber–
Ising case can be traced back to the hyperscaling law stemming from directed percolation. The
effect of an external magnetic field, leading to directed percolation-type behaviour on the level
of kinks is also studied, mainly via the generalized mean-field approximation.

1. Introduction

Non-equilibrium phase transitions have attracted great interest lately. A variety of sytems
studied seem to belong to the universality class of directed percolation (DP) [1–4]. The
DP universality class is very robust. Among transitions that belong to it are the transitions
in branching annihilating random walk (BARW) models with an odd number of offsprings
in the processA → A + nA [5–7]. Numerical studies by Grassberger and von der Twer
[8, 9] of probabilistic cellular automata models in one dimension involving the processes
k → 3k and 2k → 0 (k stands for kink) have revealed, however, a new universality class of
dynamic phase transitions. Both time-dependent and steady-state simulations have resulted
non-DP values for the relevant critical exponents. This so-called parity-conserving (PC)
phase transition has since been found in a variety of models. Then = 4 BARW model has
been studied in the greatest detail and accuracy by Jensen [10]. In a previous paper [11] one
of the the authors has introduced a family of non-equilibrium kinetic Ising models (NEKIM)
showing the same phenomenon, while quite recently, with an appropriate modification of
the original BARW model (suggested already in [11]), then = 2 BARW model has been
shown to exhibit the PC transition as well [12]. The two-component interacting monomer–
dimer model introduced by Kim, Park and Park [13–15] represents a more complex sytem
with a PC-type phase transition.

Formerly, combinations of Glauber [16] and Kawasaki [17] kinetics were introduced
with the aim of investigating temperature-driven non-equilibrium phase transitions [18, 19].
In [11], however, spin-flip kinetics was taken atT = 0 alternating with random nearest-
neighbour spin exchanges (Kawasaki-exchange atT = ∞). The mean-field limit of this
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model together with results of the generalized mean-field theory (GMF) have been presented
in [20].

In the present paper we further investigate NEKIM but now from the point of view of
the underlying 1D spin system with the aim of getting some more insight into the nature
of the PC transition. Results of computer simulations are presented for different critical
exponents connected with the structure factor. The new computational technique based on
short-time dynamics and finite-size scaling, as introduced and applied by Liet al [21, 22]
for calculating moments of the magnetization and the time-dependent Binder cumulant
[23], is also applied here besides the usual finite-size scaling (FSS) and time-dependent
simulations. In all our numerical studies the initial state is random with zero magnetization
and concerning finite-size effects the use of antiperiodic boundary conditions instead of the
usual periodic ones will prove to be essential.

In the field of domain-growth kinetics it has long been accepted that the scaling exponent
of L(t), the characteristic domain size, is equal to1

2 if the order parameter is non-conserving.
Now let us restrict ourselves to a 1D Ising spin chain of lengthL and define the structure
factor at the ferromagnetic Bragg peak as usual:S(0, t) = L[〈M2〉 − 〈M〉2], M = 1

L

∑
i si ,

(si = ±1). If the conditions of validity of scaling are fulfilled [24] then

S(0, t)) ∝ [L(t)]d L(t) ∝ tx (1)

where nowd = 1 andx = 1
2. Another quantity usually considered [24] is the excess energy

1E(t) = E(t)−ET (ET is the internal energy of a monodomain sample at the temperature
of quench), which in our case is proportional to the kink densityn(t) = 1

L
〈∑i

1
2(1−sisi+1)〉:

n(t) ∝ 1

L(t)
∝ t−y (2)

with y = 1
2 in the Glauber–Ising case, expressing the well known dependence on time of

annihilating random walk.
It is also well known, that near zero temperature the parameterpT = e−4J/kT can be

regarded as the quantity measuring the deviation from the critical temperatureTc = 0 of the
1D Ising model, and the usual (equilibrium) critical exponents can be defined as powers of
pT . From exact solutions, keeping the leading order terms forT → 0, the critical exponents
of (kBT times) the spin-susceptibility, coherence lengthξ and the magnetization are known
to be γ = ν = 1

2, β = 0, respectively. Fisher’s static scaling lawγ = dν − 2β is valid.
Moreover, the dynamic critical exponentZ, defined through the relaxation timeτ of the
order parameter nearT = 0 asτ = τ0ξ

Z, is equal to 2.
Instead of Glauber kinetics, let us now apply the non-equilibrium NEKIM kinetics, and

investigate the Ising system at and in the immediate neighbourhood of one of its PC points.
On the level of kinks the PC point, separating the active and absorbing phases, is a second-
order transition point, while from the point of view of spins the absorbing phase consists
of a multitude of 1D Ising critical points, which ends at the PC point. We are interested in
the behaviour of the spin system at this end-point.

The result is the following. The critical kink-dynamics has a strong influence on the
spin-kinetics and even on its statics. Domain growth is governed by criticality:x = 1/Z,
but the dynamic exponentZ changes fromZ = 2 toZ = 1.75. As to statics,γ = ν = 0.444
while β = 0 and Fisher’s scaling law remains valid.

More spectacular is the change of the abovey-exponent: y = x/2; x = 0.57 and
similarly the exponentαn of the finite-temperature kink-density, limt→∞ n(t, pT ) ∝ pT

αn ,
which is 1

2 in the Glauber–Ising limit, decreases toαn = γ /2 = 0.222. We shall argue
that this factor of 2 between magnetic-and kink-exponents has its origin in the hyperscaling
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law, introduced for DP by Grassberger and de la Torre [1], which connects exponents of
time-dependent kink density and cluster-size.

These numerical results will be reported in detail in the following. Moreover, we
shall present further results, mainly from the viewpoint of applying GMF approximations,
by introducing a magnetic field term into the spin-flip probability, which causes the PC
transition to become DP-like [15].

2. The model

The model we will investigate here is a one-dimensional kinetic Ising model evolving by a
combined spin-flip and spin-exchange dynamics as described in [11]. The spin-flip transition
rate in one-dimension for spinsi sitting at sitei is

wi = 0

2
(1 + δsi−1si+1)

(
1 − γ

2
si(si−1 + si+1)

)
(3)

whereγ = tanh 2J/kT (J denoting the coupling constant in the Ising Hamiltonian),0 and
δ are further parameters. While in [11]T = 0 (γ = 1) has been taken, we shall consider
now finite-temperature effects, too. Instead ofγ the parameterpT will be used in the
following. The three independent rates

windif = 0

2
(1 − δ) woppo = 0(1 + δ)

1

1 + pT

wsame = 0(1 + δ)
pT

1 + pT

(4)

where the subscripts ofw refer to the three possible neighbourhoods of a given spin, are
responsible—on the level of domain walls—for random walk, annihilation and pairwise
creation (inside of a domain) of kinks, respectively.

The other ingredient of NEKIM has been a spin-exchange transition rate of neighbouring
spins (the Kawasaki [17] rate atT = ∞):

wii+1 = 1
2pex [1 − sisi+1] (5)

wherepex is the probability of spin exchange.
Spin-flip and spin-exchange have been applied alternatingly at each time step, the spin-

flip part has been applied using two-sublattice updating, while makingL MC attempts at
random (L denotes the size of the chain) has been counted as one time-step of exchange
updating. In this system, atT = 0, a PC-type phase transition takes place. In [11] we have
started from a random initial state and determined the phase boundary in the (δ, pex) plane.
In the following we will choose a typical point on this phase diagram and make simulations
at and around this point, fixing0 andpex and changing onlyδ. The parameters chosen are:
0 = 0.35, pex = 0.3, δc = −0.395(2). We note here that0 appeared as 1/0 in [11] and
δc has a more accurate value now than previously.

3. Scaling forms and laws

In the following we will be interested in two quantities characterizing the behaviour of the
NEKIM, namely the structure factor or spin-susceptibility and the kink-density under the
conditions of a quench. Thus, in contrast to to the usually considered evolution from a pair
of kinks, we will restrict ourselves to completely random initial states (T = ∞, M(0) = 0)
and follow the development of the system via the rules described in the previous section.
With pT defined above andε = |δ − δc|, whereδ < 0 is the parameter which drives the
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Figure 1. The structure factor as a function of time at a typical phase transition point of the
NEKIM phase diagram.L = 128, and the number of independent initial configurations with
zero magnetization, was 105. Here tmax = 200 and finite-size effects start to set in at about
t = 1000. The straight line is the fit withx = 0.570.

phase transition in the present case, the scaling forms forS andn are as follows:

S(pT , ε, L, t) = txf

(
t

1
Zc

ξ

t
1
Z

ξ⊥
,

ξ

L
,
ξ⊥
L

)
(6)

n(pT , ε, L, t) = t−yg

(
t

1
Zc

ξ

t
1
Z

ξ⊥
,

ξ

L
,
ξ⊥
L

)
(7)

with ξ = pT
−ν , ξ⊥ = ε−ν⊥ . The exponents connected withε have been written using the

notation of directed percolation, while those related to the temperature factorpT are written
in the notation of equilibrium Ising system.Z and Zc are the respective dynamic critical
exponents and we allow for the possibility that they differ (though this will turn out not to
be the case). We note here that the exponenty used to be calledα in [11].

3.1. The large-L case

Let us first take the limitL → ∞. Then the dependences onξ/L and ξ⊥/L can be
neglected in equations (6) and (7). If, furthermore,ξ → ∞, ξ⊥ → ∞ the forms valid at
the critical pointε = 0, pT = 0 are obtained:Sc(t) ∝ tx andnc(t) ∝ t−y . Figure 1 shows
Sc(t) ∝ tx , with the resultx = 0.570(1). The data yieldy = 0.285(1) for the kink density
decay exponent. It is worth noticing that within the errors,x = 2y. We have also made
simulations for the same quantities withL = 8000 up tot = 3 × 104 and averaging over
2000 initial states with similar result but with higher error and more than 100 times greater
computer time.

KeepingpT = 0, nearδc in the active phase, equation (7) gives, fort → ∞, the order
parametern(ε) ∝ εβn with the scaling law[9]

βn = ν⊥Zy. (8)

A similar scaling relation can be obtained from (6), which yields fort → ∞: S(ε) ∝ ε−2

with

2 = ν⊥Zx. (9)
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Figure 2. The structure factorS(ε, t) in the active phase in the vicinity of the PC transition
point for the following values ofε: 0.13, 0.11, 0.09, 0.075, 0.06, 0.04, 0.03 (from bottom to
top). L was varied between 2000 and 8000 to avoid finite-size effects before saturation sets in.
The number of independent states in averaging is typically 1000.

The divergence of the spin-susceptibility as a function ofε is understandable: in the
subcritical regime (i.e. for|δ| < |δc| ) it is infinite ( T → 0, t → ∞), because the whole
subcritical region is a plane of 1D critical (Ising) points. In order to get2 directly, we have
made simulations forS(ε, t) around the chosen PC point in the intervalε = 0.02–0.13
as shown in figure 2. The (time-averaged) saturation values ofS yield the exponent
2 = 1.9(1). From the same runs as above we have now obtainedβn = 0.88(4). Thus
within the errors2 = 2βn, a relation which also follows from equations (8) and (9) with
x = 2y. It is worth noting here that on the basis of the divergence of the spin-susceptibility,
S(ε), the PC transition point (as end-point of a line of first-order transitions) can be found,
without any reference to kinks.

Taking nowε = 0 and keepingpT finite in the limit t → ∞ we get from equation (7)
n(pT ) ∝ pT

αn and the scaling relation

αn = yνZc. (10)

Figure 3 showsn(t, pT ) as a function oft at different values ofpT at ε = 0; the level-off
values could be fitted withαn = 0.222(5). This result is in accord with the value for the
n = 4 BARW reported by Jensen [10] (1/δh in his notation).

Similarly, taking equation (6) atε = 0 and in the limitt → ∞ the spin-susceptibility
arises:χ ∝ pT

−γ together with the scaling relation

γ = xνZc. (11)

In figure 4S(pT , 0, t) is plotted for different values ofpT . The temperature-dependent
simulations have been performed in the rangepT = 1×10−1–5×10−5. The level-off values
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Figure 3. The kink-density as a function of temperature and timen(pT , t). The curves are for
pT = 10−1, 5.0× 10−2, 10−2, 5.0× 10−3, 10−3, 5.0× 10−4 from top to bottom.L = 2000 and
the number of samples in averaging is typically 2× 104.

seen in figure 5, where the data for the two highest temperatures (pT = 1× 10−1, 5× 10−2)
were discarded, yield the exponent of the spin-susceptibility at the PC point asγ = 0.445(5).
This value is in accord, within errors, with the scaling laws (10) and (11) which predict,
using the relationx = 2y found above,γ = 2αn = 0.444.

It is to be noted that due to the non-self-averaging property of the structure factor [25], all
exponents connected with this quantity have much larger statistical errors than the ones con-
nected with the kink density, and the same applies to the time-dependent simulations. This
explains the large fluctuations exhibited on figures 2 and 4 in comparison with e.g. figure 3.

3.2. Static finite-size scaling

Finite-size scaling will be used to find numerical values for some more exponents. The
static FSS limit requires to take first the limitt → ∞ and to supposeL � ξ, ξ⊥. Let us
consider now the two possible orders of limits to reach the PC point: (a)pT = 0, ε → 0
and (b)ε = 0, pT → 0.

Case (a). Equations (6) and (7) lead to the expressions

lim
ε→0

S(ε, L) = L2/ν⊥f ′′(L/ξ⊥) ∝ L2/ν⊥

and

lim
ε→0

n(ε, L) = L−βn/ν⊥g′′(L/ξ⊥) ∝ L−βn/ν⊥

respectively.
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Figure 4. The structure factorS(pT , t) for different values ofpT . Details of simulation is as
figure 3 except thatpT is decreasing from bottom to top here.

Figure 5. The saturation values of figure 4 time-averaged, on a double-logarithmic scale. Data
for pT = 10−4, 5 × 10−5, not shown on figure 4, have also been included. Straight line: fit of
data points withγ = 0.445.

Case (b). From equations (6) and (7) we now get

lim
pT →0

S(pT , L) = L
γ

ν f̃ ′′(L/ξ) ∝ L
γ

ν
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and

lim
pT →0

n(pT , L) = L−αn/ν g̃′′(L/ξ) ∝ L−αn/ν

respectively.

Within errors we have not found any (numerical) evidence against the supposition that
the order of limitsε → 0 andpT → 0 were interchangeable. The same fixed point seems
to be reached in both cases. (Actually this fact has expressed itself already in our finding,
according to which the time-exponentsx and y are also the same, independently from
where we approach the limitε = 0, pT = 0; the difference should have been seen in
the pre-asymptotic time dependence. For very small values of, for example,pT at ε = 0,
x = 0.57, y = 0.28 was always clearly seen in the early-time behaviour ofS(t) andn(t),
respectively).

Thus the above relations lead to the following scaling equalities:

γ

ν
= 2

ν⊥

βn

ν⊥
= αn

ν
. (12)

In numerical simulations with random initial states usually periodic boundary conditions
(PBC) are supposed. The fact that PBC allow only an even number of kinks does not
matter except under the conditions of FSS close to the PC point, as eventually for all
samples the ordering becomes perfect (depletion of kinks) and triviallyγ /ν = 2/ν⊥ = 1.
Because of the same reason it is not possible to find theL-dependence of the kink density,
which breaks down as a function of time. The proper procedure is to use antiperiodic
boundary conditions (APBC), a choice which allows only an odd number of kinks (i.e. all
samples are surviving) provided the updating procedure is carefully done. As in the course
of dynamic FSS one reaches fixed points, which coincide with the limiting values (t = ∞)
of S andn above; we will cite our results in the next section.

As we shall seeγ /ν = 1 is also valid in the case of antiperiodic boundary conditions,
which value, together with equation (11), givesZc = 1/x. Moreover, we shall arrive at
βn/ν⊥ = 1

2 which, using equations (8) and (9), gives2/ν⊥ = 1 and leads toZ = 1/x.
ThusZc = Z, and the two critical dynamical exponents coincide, as anticipated. It is worth
noting that theZ = 1/x-type relation between the dynamic critical exponent and the domain
growth exponent has been found earlier for various 1D equilibrium Ising systems [26].

3.3. Early-time dynamic Monte Carlo method

In the case of systems quenched to their critical temperature [27] universality and scaling
may appear in quite an early stage of time evolution, far from equilibrium, whereξ is still
small. Based on the scaling relation for such early time intervals, a new way for measuring
static and dynamic exponents has been proposed [23, 21, 22]. Now we apply this method
to get critical exponents for a non-equilibrium phase transition.

Following [21, 22] we shall suppose the following relation to hold for thekth moment
of the magnetization near the critical point of the 1D spin system:

M(k)(t, pT , L) = b−kβ/νM(k)(b−Zt, b1/νpT , b−1L) (13)

where zero initial magnetization has been considered, andb is a rescaling factor (b = 2
will be chosen). After generating randomly an initial configuration, the system is allowed
to evolve according to the non-equilibrium kinetic rule of section 2 atpT = 0. (We could
have includedε in equation (13) as well, but we will restrict ourselves to the caseε = 0,
pT = 0, so it is of no importance here.) An average is taken over the initial configurations
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Figure 6. Collapsing of curves forM(2) with periodic boundary conditions on a double-
logarithmic scale. M: rescaled data;• : original data. From top to bottom:L = 16 (M),
32 (• ); 32 (M), 64 (• ); 64 (M), 128 (• ); 128 (M), 256 (• ). The number of samples with
random initial states in the averaging was typically 105.

with zero magnetization. In order to get sufficiently good statistics averaging has to be
performed over very many (105–106) independent initial states, as emphasized by Liet al
[21, 22] who applied the method to the 2D Ising model. To get the dynamical exponentZ

with great accuracy, they proposed calculation of the time-dependent Binder cumulant:

U(t, pT , L) = 1 − M(4)

3(M(2))
2 (14)

which behaves atpT = 0 as

U(t, 0, L) = U(b−Zt, 0, L/b). (15)

Similarly to equation (13), but now on the level of kinks, the following relation can be
written for n(t, L):

n(t, L) = b−βn/ν⊥n(b−Zt, b−1L). (16)

Note that equation (16) containsβn, ν⊥ and notβ, ν.
Considering the spin system first, besides the triviality of the fixed points reached

(M(2)∗ = 1, U∗ = 2
3) the PBC case still leads—by proper fitting—to the value ofZ andβ.

In case ofM(2), using equation (13), collapsing of curves for different values ofL has lead
to β = 0.00(2), Z = 1.75(2); see figure 6. In the case ofU(t, 0, L), which contains only
Z as a fitting parameter and thus provides it directly, collapsing of curves could again be
achieved withZ = 1.75(1). Typically 105–3× 105 averages have been performed. With
antiperiodic boundary conditions, collapse of curves has led us to the same results as above
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Figure 7. Collapsing of curves forn(t, L) according to equation (16).M: L = 100, rescaled;• : L = 200. Number of samples in the averaging: 105. Boundary condition: antiperiodic;
scale: double-logarithmic.

concerning the exponentsβ andZ. Under these conditions, however, important additional
information arises from best fit to time-averaged saturation values.

Concerning the kink densityn(t, L), equation (16), the collapse of curves is illustrated
with L = 100, 200 in figure 7. The curves scale together withZ = 1.75(1) and
βn/ν⊥ = 0.52(2). On the other hand, fitting the time-averaged saturation values for
L = 50, 64, 100, 128, 200, 256 gives for the kink-densityn(L) = 0.66 × L−0.48(2). Thus
we conclude thatβn/ν⊥ (= αn/ν) = 0.50(2). This is in accord with the result of Jensen
for the n = 4 BARW [10]. In figures 8 and 9, respectively,M(2) and U are seen with
antiperiodic boundary conditions for some values ofL. It is apparent thatU is much more
sensitive: even here many more samples in averaging would have been needed to smooth
out the curves. The time-averaged saturation values forL = 50, 64, 100, 128, 200, 256
lead toS(L) = 0.26L0.99(1) (figure 10), thusγ /ν (= 2/ν⊥) = 0.99(1). The difference as
compared with the PBC case shows up in the prefactor (0.26(1) instead of 1.0). For the
Binder cumulantU ∗ = 0.32(1), again differing from the PBC value of23. For the sake
of comparison, we have carried out the same kind of simulations for the Ising–Glauber
case (pex = 0, δ = 0) with APBC, and obtainedM(2)∗

Gl = 0.333(3), n∗
Gl = 1.00(5)/L,

U ∗
Gl = 0.40(1). HereZ = 2 andβ = 0 have given the best fit and similar result can be

expected in the whole absorbing phase. It is worth mentioning here that these fixed-point
values can be derived exactly for the Glauber case with the result:M

(2)∗
Gl = 1

3, n∗
Gl = 1/L,

U ∗
Gl = 0.4 [28].
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Figure 8. M(2)(t, L) with APBC. Rescaling withb = 2, β = 0 andZ = 1.75 has resulted in
data points marked byM. Collapsing of curves is shown, from top to bottom, forL = 32 (M),
64 (• ); 64 (M), 128 (• ); 128 (M), 256 (• ). Number of samples in averaging: 105–3× 105.

4. Symmetry-breaking field

It is by now well established that the PC transition has non-DP critical exponents, because of
the modulo 2 conservation law. Park and Park [15] have introduced a symmetry breaking
external field in case of the interacting monomer–dimer model and showed that the DP
universality class is recovered if one of the absorbing states is singled out. They have also
mentioned having similar, though—to our knowledge—not yet published data for NEKIM
and Grassberger’s automata. We have investigated the effect of an external magnetic field
H on the NEKIM model with simulations and with the help of the generalized mean-field
(GMF) technique as well, both confirming the DP behaviour. The transition probabilities
of NEKIM, as given in section 2, are modified in the presence of en external magnetic field
H as:

wh
indif = windif (1 − hsi) (17)

wh
oppo = woppo(1 − hsi) (18)

h = th

(
H

kT

)
pT = 0. (19)

Figure 11 shows the phase diagram of NEKIM in the(h, δ) plane, starting at the reference
PC point for h = 0 used in this paper (δc = −0.395). We have applied only random
initial state simulations to find the points of the line of phase transitions (critical exponents:
y = 0.17(2), βn = 0.26(2)). It is seen, that with increasing field strength the critical point
is shifted to more and more negative values ofδ.

As to the treatment of the model with the use of the GMF technique, the details of which
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Figure 9. U(t, L) with APBC for L = 16 (M), 32 (• ); 32 (M), 64 (• ); 64 (M), 128(• ) (from
top to bottom). Best collapse of curves again withZ = 1.75. Number of samples in averaging:
as for figure 8.

Figure 10. Time-averaged saturation valuesS(L) of M(2)(t, L) shown on a double-logarithmic
scale. Straight line: power-law fit withγ /ν = 0.99. Averaging has been performed over
105–3× 105 independent random initial states with APBC.

have been explained in [29–31], in the field-free case we have already obtained estimates for
the critical point and the effect of particle exchange earlier [20]. By applying the coherent
anomaly extrapolation method (CAM) [32] one can extrapolate the critical exponents of the
true singular behaviour and in [20] we could give a rough estimate for the exponentβn of
the PC transition based on (N 6 6)th order cluster GMF calculation. Now we extend the
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Figure 11. Phase diagram of NEKIM in the(h, δ) plane in the presence of an external magnetic
field. Parameters of the transition probabilities:0 = 0.35, pex = 0.3; see section 2. Naturally,
the phase diagram can be drawn symmetrically for negative values ofh, as well.

method for the determination of the exponent of the order-parameter fluctuation as well:

χn(ε) = L(〈n2〉 − 〈n〉2) ∼ ε−γn . (20)

The GMF equations have been set up for the steady states of NEKIM in the presence
of theH -field. TheN -block probabilities were determined as the numerical solution of the
GMF equations forN = 1, . . . , 6. The traditional mean-field solution (N = 1) results in
stable solutions for the magnetization :

M = −h

δ
if δ < 0 andh2/δ2 < 1 (21)

= sgn(h) otherwise (22)

and for the kink-concentration:

n = 1

2

(
1 −

(
h

δ

)2)
if δ < 0 andh2/δ2 < 1 (23)

= 0 otherwise. (24)

For N > 1 the solutions can only be found numerically. By increasing the order of
approximation the critical point estimatesδc(N) shift to more negative values similarly to the
H = 0 case. The limN→∞ δc(h) values have been determined with quadratic extrapolation
in the case ofh = 0.01, 0.05, 0.08, 0.1. The resulting curves forn(δ) andχn(δ) are shown
in figures 12 and 13, respectively, for the case ofh = 0.1 in different ordersN of the GMF
approximation. Naturally, these curves exhibit a mean-field-type singularity at the critical
point:

n(N) ∼ ρn(δ/δc(N) − 1)βMF (25)

χn(N) ∼ χn(N)(δ/δc(N) − 1)−γMF (26)

with βMF = 1 and γMF = −1. According to the CAM (based on scaling) the critical
exponents of the true singular behaviour can be obtained via the scaling behaviour of
anomaly factors:

n(N) ∼ 1βn−βMF (27)
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Figure 12. The kink density in the neighbourhood of the critical pointδc(h) for h = 0.1. The
curves from right to left correspond toN = 1, . . . , 6 (level of GMF calculation). The points
have been determined with a resolution of 10−5 in δ, in order to be able to extract CAM anomaly
coefficients.

Figure 13. The same as figure 12 but for the second moment of the kink density. It is also
apparent here that the value ofδc(h), being equal to 0.70(1) forh = 0.1 according to simulations,
is fairly well approximated by the GMF results forN = 5, 6.

χn(N) ∼ 1γn−γMF (28)

where we have used the1 = (δc/δc(N) − δc(N)/δc) invariant variable instead ofε, that
was introduced to make the CAM results independent of usingδc or 1/δc coupling [33].
Since the level of the GMF calculation which we could solve isN 6 6, we have taken into
account corrections to scaling, and determined the true exponents with a nonlinear fitting
form:

n(N) = a1βn−βMF + b1βn−βMF +1 (29)
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Table 1. CAM calculation results.

h 0.0 0.01 0.05 0.08 0.1 DP

βn 1.0 0.281 0.270 0.258 0.285 0.2767(4)
γn 0.674 0.428 0.622 0.551 0.5438(13)

χn(N) = a1γn−γMF + b1γn−γMF +1 (30)

wherea andb are coefficients to be varied. The results for varioush’s are shown in table 1.
For h = 0.0 the result cited above,βn = 1.0, has already been reported and discussed

in detail in [20]. Concerning the exponentγn at h = 0.0, we could not determine it because
the low-level GMF calculations resulted in discontinuous phase transition solutions—which
we cannot use in the CAM extrapolation—and so we had too few data points to achieve
a stable nonlinear fitting. Higher-order GMF solutions would help, but that requires the
solution of a nonlinear set of equations with more than 72 independent variables. This
problem does not occur forh 6= 0; the above results—being based on allN = 1 . . . 6 point
approximations—are fairly stable.

5. Discussion and conclusions

Time-dependent simulations, FSS and dynamic early-time MC methods have been applied
here to investigate the behaviour at and in the vicinity of a PC transition of the non-
equilibrium kinetic Ising model, with the aim of completing earlier results. Emphasis has
now been put on the critical properties of the 1D spin system underlying the kinks. In
this way we have arrived at a more-or-less complete picture of the effect the PC transition
exerts on the statics and dynamics of the 1D Ising spin phase transition. We have found that
within the errors of the numerical studies the dynamic critical exponent of the kinksZ and
that of the spinsZc agree and have the valueZ = Zc = 1.75. Thus in comparison with the
Glauber–Ising valueZ = 2.0, Z decreases, and so do alsoγ andν: γ = ν = 0.444 (instead
of 1

2). The PC point is the end-point of a line of first-order phase transitions (by keepingpex

and0 fixed and changingδ through negative values toδc), whereβ = 0 still holds and also
Fisher’s scaling lawγ = dν − 2β is valid. The PC point has been approached from two
directions: from the active phase by changingε = δc − δ and from the direction of finite
temperatures by varyingpT = e−4J/kT . The second moment of the magnetization (structure
factor) provides the ‘magnetic’ exponentsx, 2, γ , which have been found—within errors—
to be twice as large as the corresponding ones for kinks,y, βn, αn. The cause of this factor
of two must lie in the nature of the active phase, of course, and it is sufficient to understand
x = 2y (time-dependent exponents at PC) as the rest follows from scaling relations.

The idea is to recognize that there are two characteristic growth lengths at PC which
have to have the same critical exponents. Namely, the magnetic oneL(t) ∝ tx (see the
introduction) and the cluster size defined through the square root of〈R2(t)〉 ∝ t z. The latter
is obtained by starting either from two neighbouring kink initial states (see e.g. [10]), or
from a single kink [9, 11], while the magnetic domains grow in the quenching situation,
i.e. from random initial states (T = ∞ → T = 0). Both length-exponents are, however,
connected withZ, the dynamic critical exponent, since at PC the only dominant length is
the (time-dependent) correlation length.z/2 = 1/Z has been shown to follow from scaling
in [9, 34] for one-kink and two-kink initial states, respectively. Presently we have found
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x = 1/Zc, Zc = Z within numerical errors, and thus

x = z/2 (31)

follows.
Exponents of cluster growth are connected by a hyperscaling relation first established

by Grassberger and de la Torre [1] for the directed percolation transition. In the same
form it does not apply to the PC transition [10], where dependence on the initial state
(one or two kinks) manifests itself in two cluster-growth quantities: the kink-number
N(t, ε) ∝ tηf (εt1/ν⊥Z) and the survival probabilityP(t, ε) ∝ t−δg(εt1/ν⊥Z). (This δ

has, of course, nothing to do with the parameterδ of NEKIM.) In case of systems with
infinitely many absorbing states, whereδ and η depend on the density of particles in the
initial configuration, a generalized scaling relation was found to replace the original relation,
2δ + η = z/2, namely [35]:

2(β ′
n + βn)

1

ν⊥Z
+ 2η′ = z′ (32)

which is also applicable to the present situation. In equation (32)β ′
n is defined through

limt→∞ P(t, ε) ∝ εβ ′
n and the scaling relationβ ′

n = δ′ν⊥Z holds. A prime on the exponents
indicates that they may depend on the initial state. For the PC transition the exponentz

seems to be independent of the initial configuration,z′ = z.
In the case of a single-kink initial state all samples survive, thusδ′ = 0, and via the

above scaling relation, alsoβ ′
n = 0. Equation (32) then becomes 2βn/ν⊥Z + 2η′ = z.

For t → ∞, however, limt→∞ N(t, ε) ∝ εβn has to hold (the steady state reached cannot
depend on the initial state, provided samples survive). Thus, using the above scaling form
for N(t, ε), η = βn/ν⊥Z follows and the hyperscaling law can be cast into the form

4βn

ν⊥Z
= z. (33)

Starting with a two-kink initial state, however,β ′
n = βn and η′ = 0 holds [10]. With

these values equation (32) again leads to equation (33).
As z = 2/Z, equation (34) involves—at least in the case of the PC transition—

only quantities which are also defined when starting with a random initial state. Using
equation (8), equation (33) becomes

2y = 1/Z (34)

which, together with equation (31) leads to 2y = x.
In this way the factor of two between magnetic and kink exponents found in this paper

could be explained as following from scaling.
Finally, we have introduced a magnetic field into the NEKIM transition rates and

investigated its effect mainly in the framework of generalized mean-field approximation.
By going up to (N = 6)-order cluster approximation, the expectation that the universality
class of the phase transition turns into DP type [15] has been given support: we have found
values for the exponents of the kink density and its second moment which are very close
to the corresponding DP values.

Acknowledgments
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